Paper ID: 2501.08612
Neural Risk-sensitive Satisficing in Contextual Bandits
Shogo Ito, Tatsuji Takahashi, Yu Kono
The contextual bandit problem, which is a type of reinforcement learning tasks, provides an effective framework for solving challenges in recommendation systems, such as satisfying real-time requirements, enabling personalization, addressing cold-start problems. However, contextual bandit algorithms face challenges since they need to handle large state-action spaces sequentially. These challenges include the high costs for learning and balancing exploration and exploitation, as well as large variations in performance that depend on the domain of application. To address these challenges, Tsuboya et~al. proposed the Regional Linear Risk-sensitive Satisficing (RegLinRS) algorithm. RegLinRS switches between exploration and exploitation based on how well the agent has achieved the target. However, the reward expectations in RegLinRS are linearly approximated based on features, which limits its applicability when the relationship between features and reward expectations is non-linear. To handle more complex environments, we proposed Neural Risk-sensitive Satisficing (NeuralRS), which incorporates neural networks into RegLinRS, and demonstrated its utility.
Submitted: Jan 15, 2025