Paper ID: 2501.08933

Separation Assurance in Urban Air Mobility Systems using Shared Scheduling Protocols

Surya Murthy, Tyler Ingebrand, Sophia Smith, Ufuk Topcu, Peng Wei, Natasha Neogi

Ensuring safe separation between aircraft is a critical challenge in air traffic management, particularly in urban air mobility (UAM) environments where high traffic density and low altitudes require precise control. In these environments, conflicts often arise at the intersections of flight corridors, posing significant risks. We propose a tactical separation approach leveraging shared scheduling protocols, originally designed for Ethernet networks and operating systems, to coordinate access to these intersections. Using a decentralized Markov decision process framework, the proposed approach enables aircraft to autonomously adjust their speed and timing as they navigate these critical areas, maintaining safe separation without a central controller. We evaluate the effectiveness of this approach in simulated UAM scenarios, demonstrating its ability to reduce separation violations to zero while acknowledging trade-offs in flight times as traffic density increases. Additionally, we explore the impact of non-compliant aircraft, showing that while shared scheduling protocols can no longer guarantee safe separation, they still provide significant improvements over systems without scheduling protocols.

Submitted: Jan 15, 2025