3D Object Detection
3D object detection aims to accurately identify and locate objects within three-dimensional space, primarily using sensor data like LiDAR and cameras. Current research emphasizes improving accuracy and efficiency through advanced model architectures such as PointPillars, transformers, and Gaussian splatting, often incorporating multimodal fusion techniques and active learning strategies to reduce annotation costs. This field is crucial for autonomous driving, robotics, and augmented reality, with ongoing efforts focused on enhancing robustness, generalization across diverse datasets, and reducing computational demands for real-time applications.
Papers
Are Dense Labels Always Necessary for 3D Object Detection from Point Cloud?
Chenqiang Gao, Chuandong Liu, Jun Shu, Fangcen Liu, Jiang Liu, Luyu Yang, Xinbo Gao, Deyu Meng
FastOcc: Accelerating 3D Occupancy Prediction by Fusing the 2D Bird's-Eye View and Perspective View
Jiawei Hou, Xiaoyan Li, Wenhao Guan, Gang Zhang, Di Feng, Yuheng Du, Xiangyang Xue, Jian Pu
False Positive Sampling-based Data Augmentation for Enhanced 3D Object Detection Accuracy
Jiyong Oh, Junhaeng Lee, Woongchan Byun, Minsang Kong, Sang Hun Lee
ActiveAnno3D -- An Active Learning Framework for Multi-Modal 3D Object Detection
Ahmed Ghita, Bjørk Antoniussen, Walter Zimmer, Ross Greer, Christian Creß, Andreas Møgelmose, Mohan M. Trivedi, Alois C. Knoll
Improving Robustness of LiDAR-Camera Fusion Model against Weather Corruption from Fusion Strategy Perspective
Yihao Huang, Kaiyuan Yu, Qing Guo, Felix Juefei-Xu, Xiaojun Jia, Tianlin Li, Geguang Pu, Yang Liu