Action Space
Action space, in reinforcement learning, refers to the set of all possible actions an agent can take within an environment. Current research focuses on efficiently handling large or complex action spaces, particularly in multi-agent systems and continuous control problems, employing techniques like action discretization, factorization, and the use of large language models for guidance. These advancements are crucial for scaling reinforcement learning to real-world applications, such as robotics and resource management, where high-dimensional and nuanced action choices are common. Improved methods for handling action spaces directly impact the sample efficiency and overall performance of reinforcement learning algorithms.
Papers
March 29, 2022
March 23, 2022
March 15, 2022
March 7, 2022
March 5, 2022
March 3, 2022
February 25, 2022
February 23, 2022
February 19, 2022
February 13, 2022
February 5, 2022
January 31, 2022
January 28, 2022
January 12, 2022
January 2, 2022
December 12, 2021
December 1, 2021
November 13, 2021
November 11, 2021