Application Proficiency
Application proficiency focuses on optimizing the performance and efficiency of algorithms and models across diverse applications, aiming to improve accuracy, speed, and resource utilization. Current research emphasizes developing robust methods for handling model uncertainties and constraints, often employing Bayesian optimization, metaheuristics, and deep learning architectures like convolutional neural networks and transformers. This field is crucial for advancing various domains, from real-time control systems and fraud detection to personalized medicine and environmental monitoring, by enabling the effective deployment of sophisticated computational tools.
Papers
A Dempster-Shafer approach to trustworthy AI with application to fetal brain MRI segmentation
Lucas Fidon, Michael Aertsen, Florian Kofler, Andrea Bink, Anna L. David, Thomas Deprest, Doaa Emam, Frédéric Guffens, András Jakab, Gregor Kasprian, Patric Kienast, Andrew Melbourne, Bjoern Menze, Nada Mufti, Ivana Pogledic, Daniela Prayer, Marlene Stuempflen, Esther Van Elslander, Sébastien Ourselin, Jan Deprest, Tom Vercauteren
Application of a Spectral Method to Simulate Quasi-Three-Dimensional Underwater Acoustic Fields
Houwang Tu, Yongxian Wang, Wei Liu, Chunmei Yang, Jixing Qin, Shuqing Ma, Xiaodong Wang