Attention Module
Attention modules are mechanisms within neural networks designed to selectively focus on the most relevant information, improving efficiency and accuracy. Current research emphasizes developing more efficient attention mechanisms, particularly for long sequences and high-dimensional data, exploring variations like selective attention, frequency-aware attention, and low-rank approximations within architectures such as transformers and state-space models. These advancements are significantly impacting various fields, including computer vision (e.g., image and video analysis), natural language processing (e.g., large language models), and healthcare (e.g., medical image analysis), by enhancing model performance and reducing computational costs.
Papers
Taipan: Efficient and Expressive State Space Language Models with Selective Attention
Chien Van Nguyen, Huy Huu Nguyen, Thang M. Pham, Ruiyi Zhang, Hanieh Deilamsalehy, Puneet Mathur, Ryan A. Rossi, Trung Bui, Viet Dac Lai, Franck Dernoncourt, Thien Huu Nguyen
Integrating Canonical Neural Units and Multi-Scale Training for Handwritten Text Recognition
Zi-Rui Wang