Backdoor Attack
Backdoor attacks exploit vulnerabilities in machine learning models by embedding hidden triggers during training, causing the model to produce malicious outputs when the trigger is present. Current research focuses on developing and mitigating these attacks across various model architectures, including deep neural networks, vision transformers, graph neural networks, large language models, and spiking neural networks, with a particular emphasis on understanding attack mechanisms and developing robust defenses in federated learning and generative models. The significance of this research lies in ensuring the trustworthiness and security of increasingly prevalent machine learning systems across diverse applications, ranging from object detection and medical imaging to natural language processing and autonomous systems.
Papers
GhostEncoder: Stealthy Backdoor Attacks with Dynamic Triggers to Pre-trained Encoders in Self-supervised Learning
Qiannan Wang, Changchun Yin, Zhe Liu, Liming Fang, Run Wang, Chenhao Lin
Watch Out! Simple Horizontal Class Backdoor Can Trivially Evade Defense
Hua Ma, Shang Wang, Yansong Gao, Zhi Zhang, Huming Qiu, Minhui Xue, Alsharif Abuadbba, Anmin Fu, Surya Nepal, Derek Abbott