Bayesian Inference
Bayesian inference is a statistical framework for updating beliefs about unknown parameters based on observed data, aiming to quantify uncertainty and make robust predictions. Current research emphasizes developing efficient algorithms, such as those based on neural networks (e.g., simulation-based inference, variational autoencoders), to handle complex models and high-dimensional data, often incorporating techniques like amortized inference and gradient-based methods (e.g., Stein variational gradient descent). These advancements are significantly impacting various scientific fields, enabling more accurate and reliable inference in applications ranging from cosmology and medical diagnostics to robotics and materials science.
Papers
September 2, 2024
August 27, 2024
August 18, 2024
August 6, 2024
August 5, 2024
August 3, 2024
July 30, 2024
July 29, 2024
July 22, 2024
July 17, 2024
July 11, 2024
June 28, 2024
June 25, 2024
June 17, 2024
June 6, 2024
June 5, 2024
June 2, 2024
May 30, 2024
May 29, 2024