Benchmark Dataset
Benchmark datasets are curated collections of data designed to rigorously evaluate the performance of algorithms and models across various scientific domains. Current research focuses on developing datasets for diverse tasks, including multimodal data analysis (e.g., combining image, text, and audio data), challenging scenarios like low-resource languages or complex biological images, and addressing issues like model hallucinations and bias. These datasets are crucial for fostering objective comparisons, identifying limitations in existing methods, and driving advancements in machine learning and related fields, ultimately leading to more robust and reliable applications in diverse sectors.
Papers
Learned Discrepancy Reconstruction and Benchmark Dataset for Magnetic Particle Imaging
Meira Iske, Hannes Albers, Tobias Knopp, Tobias Kluth
Comparison Study: Glacier Calving Front Delineation in Synthetic Aperture Radar Images With Deep Learning
Nora Gourmelon, Konrad Heidler, Erik Loebel, Daniel Cheng, Julian Klink, Anda Dong, Fei Wu, Noah Maul, Moritz Koch, Marcel Dreier, Dakota Pyles, Thorsten Seehaus, Matthias Braun, Andreas Maier, Vincent Christlein