Causal Discovery
Causal discovery aims to infer cause-and-effect relationships from data, moving beyond simple correlations to understand underlying mechanisms. Current research emphasizes developing algorithms and models, including constraint-based methods, score-matching techniques, and those leveraging neural networks (like graph neural networks and normalizing flows), to efficiently handle high-dimensional data, time series, and latent variables, often incorporating expert knowledge or interventional data to improve accuracy. This field is crucial for advancing scientific understanding across diverse domains, from biology and healthcare to climate science and robotics, by enabling more accurate modeling, prediction, and intervention design. Improved causal discovery methods are leading to more reliable insights and more effective decision-making in complex systems.
Papers
A Skewness-Based Criterion for Addressing Heteroscedastic Noise in Causal Discovery
Yingyu Lin, Yuxing Huang, Wenqin Liu, Haoran Deng, Ignavier Ng, Kun Zhang, Mingming Gong, Yi-An Ma, Biwei Huang
Ordering-Based Causal Discovery for Linear and Nonlinear Relations
Zhuopeng Xu, Yujie Li, Cheng Liu, Ning Gui