Causal Effect
Causal effect estimation aims to determine the impact of an intervention or treatment on an outcome, accounting for confounding factors that might obscure the true relationship. Current research focuses on improving estimation accuracy and robustness, particularly in complex settings with high-dimensional data, multiple treatments, and unobserved variables, employing techniques like double machine learning, graph neural networks, and Bayesian methods. These advancements are crucial for reliable causal inference across diverse fields, enabling more informed decision-making in areas such as healthcare, social sciences, and business, where understanding cause-and-effect relationships is paramount.
Papers
Large Language Models and Causal Inference in Collaboration: A Comprehensive Survey
Xiaoyu Liu, Paiheng Xu, Junda Wu, Jiaxin Yuan, Yifan Yang, Yuhang Zhou, Fuxiao Liu, Tianrui Guan, Haoliang Wang, Tong Yu, Julian McAuley, Wei Ai, Furong Huang
Recursive Causal Discovery
Ehsan Mokhtarian, Sepehr Elahi, Sina Akbari, Negar Kiyavash