Causal Inference
Causal inference aims to determine cause-and-effect relationships from data, going beyond mere correlations to understand how interventions impact outcomes. Current research heavily focuses on addressing challenges like confounding (the influence of unobserved variables), particularly in high-dimensional data and complex treatments (e.g., text, sequences of actions), employing methods such as structural causal models, Bayesian Additive Regression Trees (BART), and various neural network architectures including Graph Neural Networks (GNNs). These advancements are crucial for improving the reliability of causal conclusions across diverse fields, from medicine and economics to personalized interventions and policy-making.
Papers
November 12, 2024
November 11, 2024
November 10, 2024
November 5, 2024
November 3, 2024
October 31, 2024
October 30, 2024
October 29, 2024
October 28, 2024
October 26, 2024
October 24, 2024
October 22, 2024
October 21, 2024
October 18, 2024
October 15, 2024