CNN Architecture

Convolutional Neural Networks (CNNs) are a cornerstone of computer vision, aiming to efficiently extract features from images for tasks like classification and object detection. Current research focuses on improving CNN efficiency through architectural innovations like structured ternary patterns, dynamic channel sampling, and novel pooling methods, as well as exploring the integration of CNNs with transformers to leverage both inductive biases and global context. These advancements are crucial for deploying CNNs on resource-constrained devices and enhancing their performance in various applications, from medical imaging to autonomous driving.

Papers