Computational Pathology
Computational pathology applies computational methods, primarily deep learning, to analyze digitized histopathology slides, aiming to improve diagnostic accuracy, efficiency, and accessibility. Current research emphasizes developing robust and generalizable models, focusing on architectures like Vision Transformers, Multiple Instance Learning (MIL), and foundation models, often incorporating multimodal data (e.g., pathology reports, gene expression) and addressing challenges like domain generalization and efficient WSI representation. This field holds significant promise for improving cancer diagnosis and prognosis, accelerating research, and potentially reducing the workload on pathologists.
Papers
Domain Generalization in Computational Pathology: Survey and Guidelines
Mostafa Jahanifar, Manahil Raza, Kesi Xu, Trinh Vuong, Rob Jewsbury, Adam Shephard, Neda Zamanitajeddin, Jin Tae Kwak, Shan E Ahmed Raza, Fayyaz Minhas, Nasir Rajpoot
Introducing instance label correlation in multiple instance learning. Application to cancer detection on histopathological images
Pablo Morales-Álvarez, Arne Schmidt, José Miguel Hernández-Lobato, Rafael Molina
Virchow: A Million-Slide Digital Pathology Foundation Model
Eugene Vorontsov, Alican Bozkurt, Adam Casson, George Shaikovski, Michal Zelechowski, Siqi Liu, Kristen Severson, Eric Zimmermann, James Hall, Neil Tenenholtz, Nicolo Fusi, Philippe Mathieu, Alexander van Eck, Donghun Lee, Julian Viret, Eric Robert, Yi Kan Wang, Jeremy D. Kunz, Matthew C. H. Lee, Jan Bernhard, Ran A. Godrich, Gerard Oakley, Ewan Millar, Matthew Hanna, Juan Retamero, William A. Moye, Razik Yousfi, Christopher Kanan, David Klimstra, Brandon Rothrock, Thomas J. Fuchs
HIGT: Hierarchical Interaction Graph-Transformer for Whole Slide Image Analysis
Ziyu Guo, Weiqin Zhao, Shujun Wang, Lequan Yu