Computational Pathology
Computational pathology applies computational methods, primarily deep learning, to analyze digitized histopathology slides, aiming to improve diagnostic accuracy, efficiency, and accessibility. Current research emphasizes developing robust and generalizable models, focusing on architectures like Vision Transformers, Multiple Instance Learning (MIL), and foundation models, often incorporating multimodal data (e.g., pathology reports, gene expression) and addressing challenges like domain generalization and efficient WSI representation. This field holds significant promise for improving cancer diagnosis and prognosis, accelerating research, and potentially reducing the workload on pathologists.
Papers
Separable-HoverNet and Instance-YOLO for Colon Nuclei Identification and Counting
Chunhui Lin, Liukun Zhang, Lijian Mao, Min Wu, Dong Hu
A Standardized Pipeline for Colon Nuclei Identification and Counting Challenge
Jijun Cheng, Xipeng Pan, Feihu Hou, Bingchao Zhao, Jiatai Lin, Zhenbing Liu, Zaiyi Liu, Chu Han