Convolutional Kernel
Convolutional kernels are the fundamental building blocks of convolutional neural networks (CNNs), responsible for extracting features from data by applying weighted sums across local regions. Current research focuses on improving kernel design for efficiency and effectiveness, exploring techniques like dynamic kernels (adapting to input data), multi-kernel approaches (capturing diverse features), and specialized kernels for specific data types (e.g., time series, 3D point clouds). These advancements are driving improvements in various applications, including image processing, speech recognition, and time series analysis, by enhancing model accuracy, reducing computational costs, and improving interpretability.
Papers
June 6, 2022
May 13, 2022
April 12, 2022
March 25, 2022
March 10, 2022
March 7, 2022
March 3, 2022
February 15, 2022
February 6, 2022
January 13, 2022
January 2, 2022
November 16, 2021