Critical Synthesis
Critical synthesis in various fields focuses on generating realistic and diverse data, often using machine learning models to overcome limitations of real-world datasets. Current research emphasizes the development and application of diffusion models, generative adversarial networks (GANs), and transformer-based architectures for tasks ranging from image and speech synthesis to molecular design and controller synthesis. This work is significant for expanding datasets in data-scarce domains, improving the performance and robustness of AI systems, and enabling new applications in medicine, materials science, and beyond.
Papers
SaMoye: Zero-shot Singing Voice Conversion Model Based on Feature Disentanglement and Enhancement
Zihao Wang, Le Ma, Yongsheng Feng, Xin Pan, Yuhang Jin, Kejun Zhang
Deformation-Recovery Diffusion Model (DRDM): Instance Deformation for Image Manipulation and Synthesis
Jian-Qing Zheng, Yuanhan Mo, Yang Sun, Jiahua Li, Fuping Wu, Ziyang Wang, Tonia Vincent, Bartłomiej W. Papież