Curriculum Learning
Curriculum learning (CL) is a machine learning technique that improves model training by presenting data in a progressively increasing order of difficulty, mimicking human learning. Current research focuses on automating curriculum design using various methods, including Fisher information, temporal difference errors, and LLM-generated difficulty metrics, applied across diverse model architectures like large language models (LLMs), graph neural networks (GNNs), and reinforcement learning (RL) agents. CL's significance lies in its ability to enhance model efficiency, generalization, and robustness across numerous applications, including natural language processing, robotics, and computer vision, by reducing training time and improving performance on complex tasks.
Papers
FANCL: Feature-Guided Attention Network with Curriculum Learning for Brain Metastases Segmentation
Zijiang Liu, Xiaoyu Liu, Linhao Qu, Yonghong Shi
Let's Be Self-generated via Step by Step: A Curriculum Learning Approach to Automated Reasoning with Large Language Models
Kangyang Luo, Zichen Ding, Zhenmin Weng, Lingfeng Qiao, Meng Zhao, Xiang Li, Di Yin, Jinlong Shu