Data Driven
Data-driven approaches are revolutionizing scientific research and engineering by leveraging vast datasets to build predictive models and automate complex tasks. Current research focuses on developing and refining algorithms like neural networks (including transformers and graph neural networks), Gaussian processes, and ADMM for diverse applications, ranging from autonomous systems and financial forecasting to scientific discovery and healthcare. This shift towards data-centric methodologies promises to accelerate scientific progress and improve the efficiency and effectiveness of various technological systems, particularly in areas where traditional modeling approaches are limited by complexity or data scarcity.
Papers
Quantifying Impairment and Disease Severity Using AI Models Trained on Healthy Subjects
Boyang Yu, Aakash Kaku, Kangning Liu, Avinash Parnandi, Emily Fokas, Anita Venkatesan, Natasha Pandit, Rajesh Ranganath, Heidi Schambra, Carlos Fernandez-Granda
Koopman Learning with Episodic Memory
William T. Redman, Dean Huang, Maria Fonoberova, Igor Mezić