Data Set
Datasets are crucial for training and evaluating machine learning models, particularly in areas like natural language processing, computer vision, and audio analysis. Current research emphasizes creating diverse and high-quality datasets addressing specific challenges, such as data imbalance, cross-lingual inconsistencies, and the need for realistic representations of real-world scenarios. This involves developing novel annotation techniques, incorporating multiple data modalities (e.g., text, images, audio), and employing various model architectures (e.g., transformers, convolutional neural networks) for analysis and benchmark creation. The availability of well-designed datasets directly impacts the development of robust and reliable machine learning models, ultimately advancing scientific understanding and improving practical applications across numerous fields.
Papers
GRDD: A Dataset for Greek Dialectal NLP
Stergios Chatzikyriakidis, Chatrine Qwaider, Ilias Kolokousis, Christina Koula, Dimitris Papadakis, Efthymia Sakellariou
Understanding URDF: A Dataset and Analysis
Daniella Tola, Peter Corke
Towards Effective Ancient Chinese Translation: Dataset, Model, and Evaluation
Geyang Guo, Jiarong Yang, Fengyuan Lu, Jiaxin Qin, Tianyi Tang, Wayne Xin Zhao
Knowledge Distillation for Object Detection: from generic to remote sensing datasets
Hoàng-Ân Lê, Minh-Tan Pham
MVA2023 Small Object Detection Challenge for Spotting Birds: Dataset, Methods, and Results
Yuki Kondo, Norimichi Ukita, Takayuki Yamaguchi, Hao-Yu Hou, Mu-Yi Shen, Chia-Chi Hsu, En-Ming Huang, Yu-Chen Huang, Yu-Cheng Xia, Chien-Yao Wang, Chun-Yi Lee, Da Huo, Marc A. Kastner, Tingwei Liu, Yasutomo Kawanishi, Takatsugu Hirayama, Takahiro Komamizu, Ichiro Ide, Yosuke Shinya, Xinyao Liu, Guang Liang, Syusuke Yasui