Deep Network
Deep networks, complex artificial neural networks with multiple layers, aim to learn intricate patterns from data by approximating complex functions. Current research focuses on improving their efficiency (e.g., through dataset distillation and novel activation functions), enhancing their interpretability (e.g., via re-label distillation and analysis of input space mode connectivity), and addressing challenges like noisy labels and domain shifts. These advancements are crucial for expanding the applicability of deep networks across diverse fields, from financial modeling and medical image analysis to time series classification and natural language processing, while simultaneously increasing their reliability and trustworthiness.
Papers
Single-phase deep learning in cortico-cortical networks
Will Greedy, Heng Wei Zhu, Joseph Pemberton, Jack Mellor, Rui Ponte Costa
Restoring speech intelligibility for hearing aid users with deep learning
Peter Udo Diehl, Yosef Singer, Hannes Zilly, Uwe Schönfeld, Paul Meyer-Rachner, Mark Berry, Henning Sprekeler, Elias Sprengel, Annett Pudszuhn, Veit M. Hofmann