Deep Neural Network
Deep neural networks (DNNs) are complex computational models aiming to mimic the human brain's learning capabilities, primarily focusing on achieving high accuracy and efficiency in various tasks. Current research emphasizes understanding DNN training dynamics, including phenomena like neural collapse and the impact of architectural choices (e.g., convolutional, transformer, and operator networks) and training strategies (e.g., weight decay, knowledge distillation, active learning). This understanding is crucial for improving DNN performance, robustness (including against adversarial attacks and noisy data), and resource efficiency in diverse applications ranging from image recognition and natural language processing to scientific modeling and edge computing.
Papers
Joint or Disjoint: Mixing Training Regimes for Early-Exit Models
Bartłomiej Krzepkowski, Monika Michaluk, Franciszek Szarwacki, Piotr Kubaty, Jary Pomponi, Tomasz Trzciński, Bartosz Wójcik, Kamil Adamczewski
Refining Tuberculosis Detection in CXR Imaging: Addressing Bias in Deep Neural Networks via Interpretability
Özgür Acar Güler, Manuel Günther, André Anjos