Deep Reinforcement Learning

Deep reinforcement learning (DRL) aims to train agents to make optimal decisions in complex environments by learning through trial and error. Current research focuses on improving DRL's robustness, sample efficiency, and interpretability, often employing architectures like Proximal Policy Optimization (PPO), deep Q-networks (DQNs), and graph neural networks (GNNs) to address challenges in diverse applications such as robotics, game playing, and resource management. The resulting advancements have significant implications for various fields, enabling the development of more adaptable and efficient autonomous systems across numerous domains.

Papers

June 29, 2023