Depth Estimation
Depth estimation, the process of determining the distance of objects from a camera, aims to reconstruct 3D scenes from visual data, crucial for applications like autonomous driving and robotics. Current research emphasizes improving accuracy and robustness, particularly in challenging scenarios like endoscopy and low-light conditions, often employing self-supervised learning techniques and novel neural network architectures such as transformers and diffusion models alongside traditional stereo vision methods. These advancements are driving progress in various fields, including medical imaging, autonomous navigation, and 3D scene reconstruction, by enabling more accurate and reliable perception of the environment.
Papers
Towards Deeply Unified Depth-aware Panoptic Segmentation with Bi-directional Guidance Learning
Junwen He, Yifan Wang, Lijun Wang, Huchuan Lu, Jun-Yan He, Jin-Peng Lan, Bin Luo, Yifeng Geng, Xuansong Xie
FS-Depth: Focal-and-Scale Depth Estimation from a Single Image in Unseen Indoor Scene
Chengrui Wei, Meng Yang, Lei He, Nanning Zheng