Depth Estimation
Depth estimation, the process of determining the distance of objects from a camera, aims to reconstruct 3D scenes from visual data, crucial for applications like autonomous driving and robotics. Current research emphasizes improving accuracy and robustness, particularly in challenging scenarios like endoscopy and low-light conditions, often employing self-supervised learning techniques and novel neural network architectures such as transformers and diffusion models alongside traditional stereo vision methods. These advancements are driving progress in various fields, including medical imaging, autonomous navigation, and 3D scene reconstruction, by enabling more accurate and reliable perception of the environment.
Papers
PatchFusion: An End-to-End Tile-Based Framework for High-Resolution Monocular Metric Depth Estimation
Zhenyu Li, Shariq Farooq Bhat, Peter Wonka
Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation
Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, Konrad Schindler