Diffusion Explainer
Diffusion explainers are generative models that leverage the principles of diffusion processes to create new data samples, primarily images and other high-dimensional data, by reversing a noise-addition process. Current research focuses on improving efficiency (e.g., one-step diffusion), enhancing controllability (e.g., through classifier-free guidance and conditioning on various modalities like text and 3D priors), and addressing challenges like data replication and mode collapse. These advancements are impacting diverse fields, from image super-resolution and medical imaging to robotics, recommendation systems, and even scientific simulations, by providing powerful tools for data generation, manipulation, and analysis.
Papers
Unsupervised Out-of-Distribution Detection with Diffusion Inpainting
Zhenzhen Liu, Jin Peng Zhou, Yufan Wang, Kilian Q. Weinberger
NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from 3D-aware Diffusion
Jiatao Gu, Alex Trevithick, Kai-En Lin, Josh Susskind, Christian Theobalt, Lingjie Liu, Ravi Ramamoorthi