Digital Pathology
Digital pathology uses digitized microscopy images to analyze tissue samples, aiming to improve diagnostic accuracy and efficiency in healthcare. Current research focuses on developing and refining deep learning models, including transformers and convolutional neural networks, to address challenges like stain variation, limited annotated data, and the need for improved model interpretability and uncertainty quantification. These advancements are leading to more robust and efficient algorithms for tasks such as image segmentation, classification, and the integration of spatial transcriptomics data, ultimately impacting clinical workflows and potentially accelerating biomarker discovery.
Papers
A Novel Pathology Foundation Model by Mayo Clinic, Charité, and Aignostics
Maximilian Alber, Stephan Tietz, Jonas Dippel, Timo Milbich, Timothée Lesort, Panos Korfiatis, Moritz Krügener, Beatriz Perez Cancer, Neelay Shah, Alexander Möllers, Philipp Seegerer, Alexandra Carpen-Amarie, Kai Standvoss, Gabriel Dernbach, Edwin de Jong, Simon Schallenberg, Andreas Kunft, Helmut Hoffer von Ankershoffen, Gavin Schaeferle, Patrick Duffy, Matt Redlon, Philipp Jurmeister, David Horst, Lukas Ruff, Klaus-Robert Müller, Frederick Klauschen, Andrew Norgan
CellViT++: Energy-Efficient and Adaptive Cell Segmentation and Classification Using Foundation Models
Fabian Hörst, Moritz Rempe, Helmut Becker, Lukas Heine, Julius Keyl, Jens Kleesiek