Digital Pathology
Digital pathology uses digitized microscopy images to analyze tissue samples, aiming to improve diagnostic accuracy and efficiency in healthcare. Current research focuses on developing and refining deep learning models, including transformers and convolutional neural networks, to address challenges like stain variation, limited annotated data, and the need for improved model interpretability and uncertainty quantification. These advancements are leading to more robust and efficient algorithms for tasks such as image segmentation, classification, and the integration of spatial transcriptomics data, ultimately impacting clinical workflows and potentially accelerating biomarker discovery.
Papers
When is a Foundation Model a Foundation Model
Saghir Alfasly, Peyman Nejat, Sobhan Hemati, Jibran Khan, Isaiah Lahr, Areej Alsaafin, Abubakr Shafique, Nneka Comfere, Dennis Murphree, Chady Meroueh, Saba Yasir, Aaron Mangold, Lisa Boardman, Vijay Shah, Joaquin J. Garcia, H. R. Tizhoosh
Virchow: A Million-Slide Digital Pathology Foundation Model
Eugene Vorontsov, Alican Bozkurt, Adam Casson, George Shaikovski, Michal Zelechowski, Siqi Liu, Kristen Severson, Eric Zimmermann, James Hall, Neil Tenenholtz, Nicolo Fusi, Philippe Mathieu, Alexander van Eck, Donghun Lee, Julian Viret, Eric Robert, Yi Kan Wang, Jeremy D. Kunz, Matthew C. H. Lee, Jan Bernhard, Ran A. Godrich, Gerard Oakley, Ewan Millar, Matthew Hanna, Juan Retamero, William A. Moye, Razik Yousfi, Christopher Kanan, David Klimstra, Brandon Rothrock, Thomas J. Fuchs
Attention De-sparsification Matters: Inducing Diversity in Digital Pathology Representation Learning
Saarthak Kapse, Srijan Das, Jingwei Zhang, Rajarsi R. Gupta, Joel Saltz, Dimitris Samaras, Prateek Prasanna
Improving Generalization Capability of Deep Learning-Based Nuclei Instance Segmentation by Non-deterministic Train Time and Deterministic Test Time Stain Normalization
Amirreza Mahbod, Georg Dorffner, Isabella Ellinger, Ramona Woitek, Sepideh Hatamikia