Direct Preference Optimization

Direct Preference Optimization (DPO) is a machine learning technique aiming to align large language models (LLMs) with human preferences without the need for an intermediary reward model, offering a more efficient alternative to reinforcement learning methods. Current research focuses on improving DPO's robustness and efficiency through techniques like token-level importance sampling, incorporating ordinal preferences, and addressing issues such as overfitting and sensitivity to hyperparameters. These advancements are significant because they enhance the reliability and scalability of aligning LLMs with human values, leading to safer and more beneficial applications of these powerful models.

Papers