Distribution Data
Distribution data, encompassing both in-distribution (ID) and out-of-distribution (OOD) data, is a critical area of machine learning research focused on improving model robustness and reliability. Current research emphasizes developing methods for detecting and handling OOD data, including techniques that leverage graph theory, contrastive learning, and diffusion models, as well as adapting existing models through reweighting and fine-tuning strategies. This work is crucial for building safer and more dependable AI systems across various applications, from autonomous vehicles to medical image analysis, by mitigating the risks associated with unexpected or unseen data. A key challenge remains effectively handling imbalanced datasets and complex real-world distribution shifts.
Papers
OpenOOD: Benchmarking Generalized Out-of-Distribution Detection
Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan Ding, Wenxuan Peng, Haoqi Wang, Guangyao Chen, Bo Li, Yiyou Sun, Xuefeng Du, Kaiyang Zhou, Wayne Zhang, Dan Hendrycks, Yixuan Li, Ziwei Liu
Exploiting Mixed Unlabeled Data for Detecting Samples of Seen and Unseen Out-of-Distribution Classes
Yi-Xuan Sun, Wei Wang