Distribution Shift
Distribution shift, the discrepancy between training and deployment data distributions, is a critical challenge in machine learning, hindering model generalization and reliability. Current research focuses on developing methods to detect, adapt to, and mitigate the impact of various shift types (e.g., covariate, concept, label, and performative shifts), employing techniques like data augmentation, model retraining with regularization, and adaptive normalization. These advancements are crucial for improving the robustness and trustworthiness of machine learning models across diverse real-world applications, particularly in safety-critical domains like healthcare and autonomous driving, where unexpected performance degradation can have significant consequences.
Papers
Neural Priming for Sample-Efficient Adaptation
Matthew Wallingford, Vivek Ramanujan, Alex Fang, Aditya Kusupati, Roozbeh Mottaghi, Aniruddha Kembhavi, Ludwig Schmidt, Ali Farhadi
DoubleAdapt: A Meta-learning Approach to Incremental Learning for Stock Trend Forecasting
Lifan Zhao, Shuming Kong, Yanyan Shen