Domain Adaptation
Domain adaptation addresses the challenge of applying machine learning models trained on one dataset (the source domain) to a different dataset with a different distribution (the target domain). Current research focuses on techniques like adversarial training, knowledge distillation, and optimal transport to bridge this domain gap, often employing transformer-based models, generative adversarial networks (GANs), and various meta-learning approaches. This field is crucial for improving the robustness and generalizability of machine learning models across diverse real-world applications, particularly in areas with limited labeled data such as medical imaging, natural language processing for low-resource languages, and personalized recommendation systems. The development of standardized evaluation frameworks is also a growing area of focus to ensure fair comparison and reproducibility of results.
Papers
Synergizing Contrastive Learning and Optimal Transport for 3D Point Cloud Domain Adaptation
Siddharth Katageri, Arkadipta De, Chaitanya Devaguptapu, VSSV Prasad, Charu Sharma, Manohar Kaul
Multi-Subdomain Adversarial Network for Cross-Subject EEG-based Emotion Recognition
Guang Lin, Jianhai Zhang
Domain-Specificity Inducing Transformers for Source-Free Domain Adaptation
Sunandini Sanyal, Ashish Ramayee Asokan, Suvaansh Bhambri, Akshay Kulkarni, Jogendra Nath Kundu, R. Venkatesh Babu