Domain Shift
Domain shift, the discrepancy between training and deployment data distributions, significantly degrades machine learning model performance. Current research focuses on developing robust algorithms and model architectures, such as U-Nets, Swin Transformers, and diffusion models, to mitigate this issue through techniques like distribution alignment, adversarial training, and knowledge distillation. These efforts are crucial for improving the reliability and generalizability of machine learning models across diverse real-world applications, particularly in medical imaging, autonomous driving, and natural language processing, where data heterogeneity is common. The ultimate goal is to create models that generalize effectively to unseen data, reducing the need for extensive retraining and improving the practical impact of AI systems.
Papers
Tackling Long-Tailed Category Distribution Under Domain Shifts
Xiao Gu, Yao Guo, Zeju Li, Jianing Qiu, Qi Dou, Yuxuan Liu, Benny Lo, Guang-Zhong Yang
Estimating Model Performance under Domain Shifts with Class-Specific Confidence Scores
Zeju Li, Konstantinos Kamnitsas, Mobarakol Islam, Chen Chen, Ben Glocker