Dynamic Environment
Dynamic environment research focuses on enabling robots and autonomous systems to effectively navigate and operate in unpredictable, changing surroundings. Current research emphasizes robust perception and planning algorithms, often incorporating deep reinforcement learning, model predictive control, and advanced mapping techniques like implicit neural representations and mesh-based methods, to handle moving obstacles and uncertain conditions. These advancements are crucial for improving the safety and efficiency of robots in diverse applications such as autonomous driving, aerial robotics, and collaborative human-robot interaction, ultimately leading to more reliable and adaptable autonomous systems.
Papers
Time is on my sight: scene graph filtering for dynamic environment perception in an LLM-driven robot
Simone Colombani, Luca Brini, Dimitri Ognibene, Giuseppe Boccignone
Physically Interpretable Probabilistic Domain Characterization
Anaïs Halin, Sébastien Piérard, Renaud Vandeghen, Benoît Gérin, Maxime Zanella, Martin Colot, Jan Held, Anthony Cioppa, Emmanuel Jean, Gianluca Bontempi, Saïd Mahmoudi, Benoît Macq, Marc Van Droogenbroeck