Effective Recommendation
Effective recommendation aims to predict user preferences and provide personalized suggestions, focusing on improving accuracy, efficiency, and fairness. Current research emphasizes incorporating diverse data sources (e.g., multimodal information, user reviews, knowledge graphs) and advanced model architectures (e.g., graph neural networks, large language models, and various contrastive learning methods) to address challenges like cold-start problems and noisy user data. These advancements are significant for enhancing user experience in various applications (e.g., e-commerce, entertainment, job recruitment) and for developing more robust and explainable recommendation systems.
Papers
Recommenadation aided Caching using Combinatorial Multi-armed Bandits
Pavamana K J, Chandramani Kishore Singh
Data Set Terminology of Deep Learning in Medicine: A Historical Review and Recommendation
Shannon L. Walston, Hiroshi Seki, Hirotaka Takita, Yasuhito Mitsuyama, Shingo Sato, Akifumi Hagiwara, Rintaro Ito, Shouhei Hanaoka, Yukio Miki, Daiju Ueda