Estimation Task
Estimation tasks, broadly defined as the process of inferring unknown parameters or values from available data, are central to numerous scientific and engineering disciplines. Current research emphasizes developing robust and efficient estimation methods across diverse data types and model complexities, focusing on techniques like Bayesian frameworks, deep neural networks (including graph convolutional networks), and simulation-based inference. These advancements are driving improvements in areas ranging from medical diagnosis and robotics to power systems optimization and material science, enabling more accurate predictions and informed decision-making.
Papers
Halo: Estimation and Reduction of Hallucinations in Open-Source Weak Large Language Models
Mohamed Elaraby, Mengyin Lu, Jacob Dunn, Xueying Zhang, Yu Wang, Shizhu Liu, Pingchuan Tian, Yuping Wang, Yuxuan Wang
Careful at Estimation and Bold at Exploration
Xing Chen, Yijun Liu, Zhaogeng Liu, Hechang Chen, Hengshuai Yao, Yi Chang