Evidence Piece
Evidence piece research focuses on improving the use of evidence in various AI applications, primarily aiming to enhance accuracy, trustworthiness, and explainability. Current research emphasizes developing methods for efficient evidence retrieval and selection, often employing techniques like contrastive learning, language model fine-tuning, and evidence theory, to improve fact-checking, clinical decision support, and other tasks. This work is significant because it addresses critical challenges in AI reliability and transparency, paving the way for more robust and trustworthy AI systems across diverse fields.
Papers
Quantifying calibration error in modern neural networks through evidence based theory
Koffi Ismael Ouattara
The Automated Verification of Textual Claims (AVeriTeC) Shared Task
Michael Schlichtkrull, Yulong Chen, Chenxi Whitehouse, Zhenyun Deng, Mubashara Akhtar, Rami Aly, Zhijiang Guo, Christos Christodoulopoulos, Oana Cocarascu, Arpit Mittal, James Thorne, Andreas Vlachos
The Impact of Generative AI on Collaborative Open-Source Software Development: Evidence from GitHub Copilot
Fangchen Song, Ashish Agarwal, Wen Wen
Loki: An Open-Source Tool for Fact Verification
Haonan Li, Xudong Han, Hao Wang, Yuxia Wang, Minghan Wang, Rui Xing, Yilin Geng, Zenan Zhai, Preslav Nakov, Timothy Baldwin