Expert Knowledge
Expert knowledge integration in machine learning aims to leverage human expertise to improve model performance and interpretability, addressing limitations of purely data-driven approaches. Current research focuses on incorporating expert knowledge through various methods, including Mixture-of-Experts (MoE) architectures that combine specialized models for enhanced efficiency and adaptability, and techniques for upcycling pre-trained models to incorporate domain-specific knowledge. These advancements are significant for improving model accuracy, efficiency, and trustworthiness across diverse applications, from medical image analysis to natural language processing and time series forecasting.
Papers
Explainable data-driven modeling via mixture of experts: towards effective blending of grey and black-box models
Jessica Leoni, Valentina Breschi, Simone Formentin, Mara Tanelli
Checkmating One, by Using Many: Combining Mixture of Experts with MCTS to Improve in Chess
Felix Helfenstein, Jannis Blüml, Johannes Czech, Kristian Kersting
Mixtral of Experts
Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed
MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts
Maciej Pióro, Kamil Ciebiera, Krystian Król, Jan Ludziejewski, Michał Krutul, Jakub Krajewski, Szymon Antoniak, Piotr Miłoś, Marek Cygan, Sebastian Jaszczur
Generator Assisted Mixture of Experts For Feature Acquisition in Batch
Vedang Asgaonkar, Aditya Jain, Abir De
Jack of All Tasks, Master of Many: Designing General-purpose Coarse-to-Fine Vision-Language Model
Shraman Pramanick, Guangxing Han, Rui Hou, Sayan Nag, Ser-Nam Lim, Nicolas Ballas, Qifan Wang, Rama Chellappa, Amjad Almahairi