Expert Knowledge
Expert knowledge integration in machine learning aims to leverage human expertise to improve model performance and interpretability, addressing limitations of purely data-driven approaches. Current research focuses on incorporating expert knowledge through various methods, including Mixture-of-Experts (MoE) architectures that combine specialized models for enhanced efficiency and adaptability, and techniques for upcycling pre-trained models to incorporate domain-specific knowledge. These advancements are significant for improving model accuracy, efficiency, and trustworthiness across diverse applications, from medical image analysis to natural language processing and time series forecasting.
Papers
Residual Mixture of Experts
Lemeng Wu, Mengchen Liu, Yinpeng Chen, Dongdong Chen, Xiyang Dai, Lu Yuan
On the Representation Collapse of Sparse Mixture of Experts
Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra, Saksham Singhal, Payal Bajaj, Xia Song, Xian-Ling Mao, Heyan Huang, Furu Wei