Faithful Generation
Faithful generation focuses on creating outputs—text, images, audio, code, or other data—that accurately reflect a given input or prompt, prioritizing correctness and adherence to specifications. Current research emphasizes improving the fidelity and controllability of generation using various model architectures, including diffusion models, transformers, and variational autoencoders, often incorporating techniques like retrieval-augmented generation and multi-agent frameworks. This field is significant for advancing AI capabilities across numerous domains, from improving large language model evaluations and enhancing human-computer interaction to creating more realistic synthetic data for training and analysis in various scientific fields.
Papers
Semantic Map-based Generation of Navigation Instructions
Chengzu Li, Chao Zhang, Simone Teufel, Rama Sanand Doddipatla, Svetlana Stoyanchev
Mesh2NeRF: Direct Mesh Supervision for Neural Radiance Field Representation and Generation
Yujin Chen, Yinyu Nie, Benjamin Ummenhofer, Reiner Birkl, Michael Paulitsch, Matthias Müller, Matthias Nießner
Synthetic training set generation using text-to-audio models for environmental sound classification
Francesca Ronchini, Luca Comanducci, Fabio Antonacci
Paired Diffusion: Generation of related, synthetic PET-CT-Segmentation scans using Linked Denoising Diffusion Probabilistic Models
Rowan Bradbury, Katherine A. Vallis, Bartlomiej W. Papiez
GRM: Large Gaussian Reconstruction Model for Efficient 3D Reconstruction and Generation
Yinghao Xu, Zifan Shi, Wang Yifan, Hansheng Chen, Ceyuan Yang, Sida Peng, Yujun Shen, Gordon Wetzstein
EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling
Shimao Zhang, Yu Bao, Shujian Huang