Feature Interaction
Feature interaction research focuses on understanding how multiple input features jointly influence model predictions, aiming to improve model accuracy, interpretability, and efficiency. Current research emphasizes developing methods to detect and quantify these interactions, often employing techniques like Shapley values, transformers, and graph-based approaches within various model architectures (e.g., CNNs, tree-based models). This work is significant because accurately modeling feature interactions is crucial for enhancing the performance and trustworthiness of machine learning models across diverse applications, from recommender systems and medical image analysis to autonomous driving and scientific discovery.
Papers
SmoothHess: ReLU Network Feature Interactions via Stein's Lemma
Max Torop, Aria Masoomi, Davin Hill, Kivanc Kose, Stratis Ioannidis, Jennifer Dy
DistDNAS: Search Efficient Feature Interactions within 2 Hours
Tunhou Zhang, Wei Wen, Igor Fedorov, Xi Liu, Buyun Zhang, Fangqiu Han, Wen-Yen Chen, Yiping Han, Feng Yan, Hai Li, Yiran Chen