GAN Model
Generative Adversarial Networks (GANs) are a class of deep learning models designed to generate new data instances that resemble a training dataset. Current research focuses on improving GAN training stability, addressing issues like mode collapse, and enhancing controllability over generated outputs, often through integration with other models like diffusion models or reinforcement learning. Applications span diverse fields, including image generation and editing, drug discovery, and data augmentation for tasks where real data is scarce or expensive to obtain, significantly impacting various scientific domains and practical applications. Recent work also highlights the exploration of alternative training methods to improve efficiency and quality, moving beyond traditional adversarial training.
Papers
Comprehensive Exploration of Synthetic Data Generation: A Survey
André Bauer, Simon Trapp, Michael Stenger, Robert Leppich, Samuel Kounev, Mark Leznik, Kyle Chard, Ian Foster
What You See is What You GAN: Rendering Every Pixel for High-Fidelity Geometry in 3D GANs
Alex Trevithick, Matthew Chan, Towaki Takikawa, Umar Iqbal, Shalini De Mello, Manmohan Chandraker, Ravi Ramamoorthi, Koki Nagano