Generative AI Model
Generative AI models are computational systems designed to create new content, such as text, images, and audio, by learning patterns from existing data. Current research emphasizes improving efficiency and scalability of these models, particularly focusing on architectures like transformers and diffusion models, and addressing challenges like bias mitigation, data security, and responsible AI practices. The widespread adoption of generative AI across diverse fields, from medicine and law to art and entertainment, necessitates rigorous research into its capabilities, limitations, and societal impact.
Papers
Machine Unlearning Doesn't Do What You Think: Lessons for Generative AI Policy, Research, and Practice
A. Feder Cooper, Christopher A. Choquette-Choo, Miranda Bogen, Matthew Jagielski, Katja Filippova, Ken Ziyu Liu, Alexandra Chouldechova, Jamie Hayes, Yangsibo Huang, Niloofar Mireshghallah, Ilia Shumailov, Eleni Triantafillou, Peter Kairouz, Nicole Mitchell, Percy Liang, Daniel E. Ho, Yejin Choi, Sanmi Koyejo, Fernando Delgado, James Grimmelmann, Vitaly Shmatikov, Christopher De Sa, Solon Barocas, Amy Cyphert, Mark Lemley, danah boyd, Jennifer Wortman Vaughan, Miles Brundage, David Bau, Seth Neel, Abigail Z. Jacobs, Andreas Terzis, Hanna Wallach, Nicolas Papernot, Katherine Lee
Proactive Agents for Multi-Turn Text-to-Image Generation Under Uncertainty
Meera Hahn, Wenjun Zeng, Nithish Kannen, Rich Galt, Kartikeya Badola, Been Kim, Zi Wang
A Survey of Large Language Model-Based Generative AI for Text-to-SQL: Benchmarks, Applications, Use Cases, and Challenges
Aditi Singh, Akash Shetty, Abul Ehtesham, Saket Kumar, Tala Talaei Khoei
Parametric-ControlNet: Multimodal Control in Foundation Models for Precise Engineering Design Synthesis
Rui Zhou, Yanxia Zhang, Chenyang Yuan, Frank Permenter, Nikos Arechiga, Matt Klenk, Faez Ahmed