Generative Language Model
Generative language models (GLMs) are artificial intelligence systems designed to produce human-like text, aiming to improve tasks like text summarization, question answering, and creative writing. Current research focuses on enhancing GLMs' accuracy, addressing biases and hallucinations, and improving efficiency through techniques like retrieval-augmented generation (RAG), fine-tuning with smaller, specialized models, and optimizing model architectures (e.g., transformers). These advancements have significant implications for various fields, including education (automated scoring), scientific discovery (catalyst design), and addressing societal challenges (mitigating harmful outputs), but also raise concerns about ethical implications and potential biases.
Papers
Out-of-Distribution Detection and Selective Generation for Conditional Language Models
Jie Ren, Jiaming Luo, Yao Zhao, Kundan Krishna, Mohammad Saleh, Balaji Lakshminarayanan, Peter J. Liu
Augmentation Invariant Discrete Representation for Generative Spoken Language Modeling
Itai Gat, Felix Kreuk, Tu Anh Nguyen, Ann Lee, Jade Copet, Gabriel Synnaeve, Emmanuel Dupoux, Yossi Adi