Glioblastoma Multiforme
Glioblastoma multiforme (GBM) is an aggressive brain cancer with a poor prognosis, necessitating improved diagnostic and treatment strategies. Current research heavily utilizes deep learning, particularly convolutional neural networks (CNNs) like U-Net, ResNet, and EfficientNet, applied to multi-modal magnetic resonance imaging (MRI) data for accurate tumor segmentation, classification (including grading and molecular subtyping), and prediction of treatment response and survival. These AI-driven approaches aim to improve the accuracy and speed of diagnosis, personalize treatment planning (e.g., predicting MGMT promoter methylation status), and ultimately enhance patient outcomes by enabling earlier and more effective interventions.
Papers
Detection and Classification of Glioblastoma Brain Tumor
Utkarsh Maurya, Appisetty Krishna Kalyan, Swapnil Bohidar, Dr. S. Sivakumar
Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks
Ragnhild Holden Helland, Alexandros Ferles, André Pedersen, Ivar Kommers, Hilko Ardon, Frederik Barkhof, Lorenzo Bello, Mitchel S. Berger, Tora Dunås, Marco Conti Nibali, Julia Furtner, Shawn Hervey-Jumper, Albert J. S. Idema, Barbara Kiesel, Rishi Nandoe Tewari, Emmanuel Mandonnet, Domenique M. J. Müller, Pierre A. Robe, Marco Rossi, Lisa M. Sagberg, Tommaso Sciortino, Tom Aalders, Michiel Wagemakers, Georg Widhalm, Marnix G. Witte, Aeilko H. Zwinderman, Paulina L. Majewska, Asgeir S. Jakola, Ole Solheim, Philip C. De Witt Hamer, Ingerid Reinertsen, Roelant S. Eijgelaar, David Bouget