Glioblastoma Patient
Glioblastoma, an aggressive brain cancer, is the focus of intense research aimed at improving diagnosis, treatment planning, and survival prediction. Current research heavily utilizes deep learning models, including various convolutional neural networks (CNNs) and transformer architectures, to analyze multi-parametric MRI scans, integrating imaging data with clinical and molecular information to predict survival, assess tumor heterogeneity, and even estimate MGMT promoter methylation status non-invasively. These advancements offer the potential for more precise and personalized treatment strategies, reducing the need for invasive biopsies and improving patient outcomes.
Papers
Detection and Classification of Glioblastoma Brain Tumor
Utkarsh Maurya, Appisetty Krishna Kalyan, Swapnil Bohidar, Dr. S. Sivakumar
Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks
Ragnhild Holden Helland, Alexandros Ferles, André Pedersen, Ivar Kommers, Hilko Ardon, Frederik Barkhof, Lorenzo Bello, Mitchel S. Berger, Tora Dunås, Marco Conti Nibali, Julia Furtner, Shawn Hervey-Jumper, Albert J. S. Idema, Barbara Kiesel, Rishi Nandoe Tewari, Emmanuel Mandonnet, Domenique M. J. Müller, Pierre A. Robe, Marco Rossi, Lisa M. Sagberg, Tommaso Sciortino, Tom Aalders, Michiel Wagemakers, Georg Widhalm, Marnix G. Witte, Aeilko H. Zwinderman, Paulina L. Majewska, Asgeir S. Jakola, Ole Solheim, Philip C. De Witt Hamer, Ingerid Reinertsen, Roelant S. Eijgelaar, David Bouget