Global Impact
Research on global impact examines how various factors influence the performance, fairness, and broader consequences of machine learning models and algorithms across diverse applications. Current investigations focus on understanding the effects of data characteristics (e.g., homophily, outliers, imbalanced classes), model architectures (e.g., CNNs, LLMs, GNNs), and training methodologies (e.g., regularization, transfer learning) on model behavior and outcomes. These studies are crucial for improving model robustness, fairness, and efficiency, ultimately leading to more reliable and beneficial applications in fields ranging from healthcare and autonomous systems to open-source software development and environmental monitoring. The ultimate goal is to develop more responsible and effective AI systems that minimize unintended consequences and maximize societal benefit.
Papers
Objectives Matter: Understanding the Impact of Self-Supervised Objectives on Vision Transformer Representations
Shashank Shekhar, Florian Bordes, Pascal Vincent, Ari Morcos
When Do Graph Neural Networks Help with Node Classification? Investigating the Impact of Homophily Principle on Node Distinguishability
Sitao Luan, Chenqing Hua, Minkai Xu, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, Jie Fu, Jure Leskovec, Doina Precup