Graph Representation Learning
Graph representation learning aims to encode graph-structured data into low-dimensional vector representations suitable for machine learning tasks. Current research focuses on improving the expressiveness and efficiency of graph neural networks (GNNs), exploring alternative approaches like topological embeddings and leveraging large language models for enhanced interpretability and handling of text-attributed graphs. These advancements are crucial for tackling challenges in various domains, including recommendation systems, anomaly detection, and biological data analysis, where graph-structured data is prevalent and efficient, accurate analysis is critical.
Papers
Causal-Based Supervision of Attention in Graph Neural Network: A Better and Simpler Choice towards Powerful Attention
Hongjun Wang, Jiyuan Chen, Lun Du, Qiang Fu, Shi Han, Xuan Song
Tokenized Graph Transformer with Neighborhood Augmentation for Node Classification in Large Graphs
Jinsong Chen, Chang Liu, Kaiyuan Gao, Gaichao Li, Kun He