High Dimensional
High-dimensional data analysis focuses on extracting meaningful information and building predictive models from datasets with numerous variables, often exceeding the number of observations. Current research emphasizes developing computationally efficient algorithms, such as stochastic gradient descent and its variants, and novel model architectures like graph neural networks and deep learning approaches tailored to handle the unique challenges posed by high dimensionality, including issues of sparsity and missing data. These advancements are crucial for addressing complex problems across diverse fields, including scientific modeling, robotics, and financial risk assessment, where high-dimensional data are increasingly prevalent.
Papers
January 11, 2025
January 7, 2025
January 3, 2025
January 1, 2025
December 31, 2024
December 30, 2024
December 27, 2024
December 24, 2024
December 21, 2024
December 19, 2024
December 17, 2024
December 16, 2024
December 13, 2024
December 12, 2024
December 10, 2024