High Dimensional
High-dimensional data analysis focuses on extracting meaningful information and building predictive models from datasets with numerous variables, often exceeding the number of observations. Current research emphasizes developing computationally efficient algorithms, such as stochastic gradient descent and its variants, and novel model architectures like graph neural networks and deep learning approaches tailored to handle the unique challenges posed by high dimensionality, including issues of sparsity and missing data. These advancements are crucial for addressing complex problems across diverse fields, including scientific modeling, robotics, and financial risk assessment, where high-dimensional data are increasingly prevalent.
Papers
August 21, 2023
August 17, 2023
August 2, 2023
July 29, 2023
July 28, 2023
July 27, 2023
July 26, 2023
July 25, 2023
July 20, 2023
July 12, 2023
July 9, 2023
July 7, 2023
July 5, 2023
July 2, 2023
July 1, 2023
June 30, 2023